
Cornell CS 5740: Natural Language Processing
Yoav Artzi, Spring 2023

Annotated Data
Aligning LLMs

1

• Goal: turn LLMs from text generators to models that can follow
specific instructions and are relatively controlled

• Two independent techniques

- Supervised: learn from annotated data/demonstration

- RL-ish: learn from preferences

• In practice: they are combined to a complete process

Aligning LLMs

2

A Three-step Process
Aligning LLMs

3
[Figure from Ouyang et al. 2022]

The Complete Process
Aligning LLMs

4
[Figure from Eric Mitchell]

Step 0:
Unsupervised pre-training

(tons of data; >1T tokens)

Step 1:
Supervised fine-tuning

on human demos

Step 2:
Fit a reward model

to human preferences
over samplesπSFT

Step 3:
Optimize a policy to

maximize learned rewards

πθ0
πθSFT

πθRL
rϕ

“Write a poem about jazz.”
…

X

Y
(prompts)

(human
demos)

Fine-tune

Fine-tune
Fine-tune

(xi, yi
w, yi

l)
(preference pairs)

Human!

X′

OptimizeSample!

• Many tasks can be formulated as text-in (prompt) to text-out

• So fits the LLM “signature”

• The gist: merge a lot of data to one giant dataset

• Two sources:

- There is a lot of data in NLP tasks

- Special annotation efforts

Instruction Tuning

5

• Prepare the data: diverse
annotated data, and if needed
convert to text-to-text

• Split along tasks to train and test

• Train on data of all training tasks

- Optimize the likelihood of the
annotated output tokens

• Test: zero-shot on new tasks

The General Protocol
Instruction Tuning

6

Review: We came here on a Saturday night
and luckily it wasn't as packed as I

thought it would be [...] On a scale of 1
to 5, I would give this a

I know that the answer to “ What team did
the Panthers defeat? ” is in “ The Panthers

finished the regular season [...] ”. Can
you tell me what it is?

LM

Graffiti artist Banksy
is believed to be

behind [...]

4

Yes

Arizona Cardinals

Summarization

Question Answering

Sentiment Analysis

Suppose “ The banker contacted the professors
and the athlete”. Can we infer that " The

banker contacted the professors "?

The picture appeared on the wall of a
Poundland store on Whymark Avenue [...] How

would you rephrase that in a few words?

Natural Language Inference

Multi-task training
Zero-shot generalization

[Image modified from Sanh et al. 2022]

Pretty much all competitive LLMs are instruction tuned

• Large number of “classical”
NLP tasks, relatively diverse

• Convert them to text-to-text

• Multiple templates for each
dataset (why?)

• Split for train/test along tasks

The T0 Recipe
Instruction Tuning

7

SummarizationSentiment

Paraphrase
Identification

Coreference
Resolution

QQP

MRPC

PAWS

Yelp

Rotten Tomatoes

App Reviews

IMDB

Amazon

Topic Classification

AG News

DBPedia

TREC

Structure-To-Text

Wiki Bio

Common Gen

MultiNews

Gigaword

XSum

SamSum

CNN Daily Mail

Closed-Book QA

Hotpot QA

Wiki QA

Extractive QA

ROPES

Adversarial QA

DuoRC

Multiple-Choice QA

CommonsenseQA

DREAM

QuAIL

QuaRTz

Social IQA

Cosmos QA

QASC

WiQA

SciQ

QuaRel

COPA

Sentence Completion

HellaSwag

Story Cloze

Natural Language
Inference

ANLI

CB

RTE

WSC

Winogrande

Word Sense
Disambiguation

WiC

Quoref

Wiki Hop

BIG-Bench

Code Description

Conceptual

Hindu Knowledge

Known Unknowns

Language ID

Logic Grid

Logical Deduction

Misconceptions

Movie Dialog

Novel Concepts

Strategy QA

Syllogisms

Vitamin C

Winowhy

[Sanh et al. 2022]

The T0 Recipe
Instruction Tuning

8

SummarizationSentiment

Paraphrase
Identification

Coreference
Resolution

QQP

MRPC

PAWS

Yelp

Rotten Tomatoes

App Reviews

IMDB

Amazon

Topic Classification

AG News

DBPedia

TREC

Structure-To-Text

Wiki Bio

Common Gen

MultiNews

Gigaword

XSum

SamSum

CNN Daily Mail

Closed-Book QA

Hotpot QA

Wiki QA

Extractive QA

ROPES

Adversarial QA

DuoRC

Multiple-Choice QA

CommonsenseQA

DREAM

QuAIL

QuaRTz

Social IQA

Cosmos QA

QASC

WiQA

SciQ

QuaRel

COPA

Sentence Completion

HellaSwag

Story Cloze

Natural Language
Inference

ANLI

CB

RTE

WSC

Winogrande

Word Sense
Disambiguation

WiC

Quoref

Wiki Hop

BIG-Bench

Code Description

Conceptual

Hindu Knowledge

Known Unknowns

Language ID

Logic Grid

Logical Deduction

Misconceptions

Movie Dialog

Novel Concepts

Strategy QA

Syllogisms

Vitamin C

Winowhy

[Sanh et al. 2022]

• Large number of “classical”
NLP tasks, relatively diverse

• Convert them to text-to-text

• Multiple templates for each
dataset (why?)

• Split for train/test along tasks

The T0 Recipe
Instruction Tuning

9
[Sanh et al. 2022]

Document The picture appeared on the wall of a
Poundland store on Whymark Avenue...

Summary Graffiti artist Banksy is believed to be
behind...

Document The picture appeared on the wall of a
Poundland store on Whymark Avenue...

Summary Graffiti artist Banksy is believed to be
behind...

Document The picture appeared on the wall of a
Poundland store on Whymark Avenue...

Summary Graffiti artist Banksy is believed to be
behind...

QQP (Paraphrase) XSum (Summary)

{Question1} {Question2}
Pick one: These questions

are duplicates or not
duplicates.

I received the questions
" {Question1} " and

" {Question2} ". Are they
duplicates?

{Choices[label]}

{Document}
How would you

rephrase that in
a few words?

First, please read the article:
{Document}

Now, can you write me an
extremely short abstract for it?

{Summary}

Question1 How is air traffic controlled?

Question2 How do you become an air traffic controller?

Label 0

Question1 How is air traffic controlled?

Question2 How do you become an air traffic controller?

Label 0

Question1 How is air traffic controlled?

Question2 How do you become an air traffic controller?

Label 0

Question1 How is air traffic controlled?

Question2 How do you become an air traffic controller?

Label 0

Document The picture appeared on the wall of a
Poundland store on Whymark Avenue...

Summary Graffiti artist Banksy is believed to be
behind...

{Choices[label]} {Summary}

The T0 Recipe
Instruction Tuning

10
[Sanh et al. 2022]

Document The picture appeared on the wall of a
Poundland store on Whymark Avenue...

Summary Graffiti artist Banksy is believed to be
behind...

Document The picture appeared on the wall of a
Poundland store on Whymark Avenue...

Summary Graffiti artist Banksy is believed to be
behind...

Document The picture appeared on the wall of a
Poundland store on Whymark Avenue...

Summary Graffiti artist Banksy is believed to be
behind...

QQP (Paraphrase) XSum (Summary)

{Question1} {Question2}
Pick one: These questions

are duplicates or not
duplicates.

I received the questions
" {Question1} " and

" {Question2} ". Are they
duplicates?

{Choices[label]}

{Document}
How would you

rephrase that in
a few words?

First, please read the article:
{Document}

Now, can you write me an
extremely short abstract for it?

{Summary}

Question1 How is air traffic controlled?

Question2 How do you become an air traffic controller?

Label 0

Question1 How is air traffic controlled?

Question2 How do you become an air traffic controller?

Label 0

Question1 How is air traffic controlled?

Question2 How do you become an air traffic controller?

Label 0

Question1 How is air traffic controlled?

Question2 How do you become an air traffic controller?

Label 0

Document The picture appeared on the wall of a
Poundland store on Whymark Avenue...

Summary Graffiti artist Banksy is believed to be
behind...

{Choices[label]} {Summary}

• Large number of “classical”
NLP tasks, relatively diverse

• Convert them to text-to-text

• Multiple templates for each
dataset (why?)

• Split for train/test along tasks

The T0 Recipe
Instruction Tuning

11
[Sanh et al. 2022]

Published as a conference paper at ICLR 2022

0

20

40

60

80

0

20

40

60

80

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

GPT-3 (6.7B) GPT-3 (13B) GPT-3 (175B) T5+LM (11B) T0 (11B)

RTE CB ANLI R1 ANLI R2 ANLI R3

WSC Winogrande COPA StoryCloze HellaSwag WiC

Natural Language Inference

Coreference Resolution Sentence Completion Word Sense

Figure 4: Results for T0 task generalization experiments compared to GPT-3 (Brown et al., 2020).
Each dot is the performance of one evaluation prompt. The baseline T5+LM model is the same as
T0 except without multitask prompted training. GPT-3 only reports a single prompt for each dataset.

approach leads to significant gains over our baseline on all datasets, demonstrating the benefits
of multitask prompted training over only language modeling training with an identical model and
prompts.

Next, we compare T0 to the zero-shot performance of the largest language models available as of
writing, i.e., various GPT-3 models up to 175B parameters. Note that Brown et al. (2020) report per-
formance on a single prompt,2 whereas we report the median and interquartile range of performance
across all prompts in P3 without cherry picking. We find that T0 matches or exceeds the performance
of all GPT-3 models on 9 out of 11 held-out datasets. Notably, neither T0 nor GPT-3 is trained on
natural language inference, yet T0 outperforms GPT-3 on all NLI datasets, even though our T5+LM
baseline does not. The same is true for most datasets of other held-out tasks. The two exceptions are
Winogrande and HellaSwag, which we discuss in Section 7.

To evaluate our models on more held-out tasks, we assess the zero-shot performance of T0, T0+,
and T0++ on a subset of BIG-bench (BIG-bench collaboration, 2021). Tasks from BIG-bench cover
a variety of novel skills not included in our training tasks, such as deducing the order of a sequence
of objects, solving logic grid puzzles, and telling apart true statements from common misconcep-
tions. The maintainers of BIG-bench provide a prompt for each dataset, with which we compare our
models to a series of preliminary diagnostic baseline models trained by Google and evaluated by
the BIG-bench maintainers. These models are decoder-only Transformer language models trained
on a standard language modeling objective with varying model size. We find that at least one of the
T0 variants outperform all baseline models on all tasks except for StrategyQA (Figure 5). In most
cases, the performance of our models improves as the number of training datasets increases (i.e.,
T0++ outperforms T0+ which outperforms T0).

6.2 PROMPT ROBUSTNESS

Our second research question is whether training on a wider range of prompts improves robustness
to the wording of the prompts. We conduct two ablation experiments on the effects of the average
number of prompts per dataset (p) and the number of datasets (d) used during training.

2Our experiments in Section 6.2 lead us to believe that this performance corresponds to the best prompt
found after manual tuning according to validation set performance.

7

• Find as many datasets as you
can → 1,836 tasks

• Convert them to text-to-text

• Mix-in instructions with or
without examples

- Directly fine-tuning for in-
context learning (more on
this later)

• Split for train/test along tasks

The Flan-PaLM Recipe
Instruction Tuning

12
[Chung et al. 2022]

Answer the following
yes/no question.

Can you write a whole
Haiku in a single tweet?

Answer the following yes/no question
by reasoning step-by-step.

Can you write a whole Haiku in a
single tweet?

Q: Answer the following
yes/no question.
Could a dandelion suffer
from hepatitis?
A: no

Q: Answer the following
yes/no question.
Can you write a whole Haiku
in a single tweet?
A:

Q: Answer the following yes/no question by
reasoning step-by-step.
Could a dandelion suffer from hepatitis?
A: Hepatitis only affects organisms with livers.
Dandelions don’t have a liver. The answer is no.

Q: Answer the following yes/no question by
reasoning step-by-step.
Can you write a whole Haiku in a single tweet?
A:

A haiku is a japanese
three-line poem.
That is short enough
to fit in 280
characters. The
answer is yes.

A haiku is a japanese
three-line poem.
That is short enough
to fit in 280
characters. The
answer is yes.

yes

yes

With chain-of-thoughtWithout chain-of-thought

Instruction
without

exemplars

Instruction
with exemplars

Figure 3: Combinations of finetuning data formats in this work. We finetune with and without exemplars,
and also with and without chain-of-thought. In addition, we have some data formats without instructions
but with few-shot exemplars only, like in Min et al. (2022) (not shown in the figure). Note that only nine
chain-of-thought (CoT) datasets use the CoT formats.

Chain-of-thought finetuning mixture. The fourth finetuning data mixture (reasoning) involves CoT anno-
tations, which we use to explore whether finetuning on CoT annotations improves performance on unseen
reasoning tasks. We create a new mixture of nine datasets from prior work for which human raters manually
wrote CoT annotations for a training corpus. These nine datasets include tasks such as arithmetic reasoning
(Cobbe et al., 2021), multi-hop reasoning (Geva et al., 2021), and natural language inference (Camburu et al.,
2020). We manually compose ten instruction templates per task. A data card is in Appendix F.

Templates and formatting. For Mu�n, T0-SF, and NIV2, we use instructional templates for each task as
given by the creators of the mixtures. For CoT, we manually write around ten instruction templates for each of
the nine datasets. To create few-shot templates, we write a variety of exemplar delimiters (e.g., "Q:"/"A:") and
apply them randomly at the example level. An example of formatting for both with and without exemplars,
as well as with and without CoT, is shown in Figure 3.

2.2 Finetuning procedure

In this paper, we apply instruction finetuning across a broad range of model families, including T5 (Ra�el
et al., 2020), PaLM (Chowdhery et al., 2022), and U-PaLM (Tay et al., 2022b). These model families span a
range of sizes, from Flan-T5-small (80M parameters), to PaLM and U-PaLM (540B parameters). For each
model, we apply the same training procedure, except for a few hyperparameters: learning rate, batch size,
dropout, and finetuning steps. We use a constant learning rate schedule and finetune using the Adafactor
optimizer (Shazeer and Stern, 2018). We use packing (Ra�el et al., 2020) to combine multiple training
examples into a single sequence, separating inputs from targets using an end-of-sequence token. Masking is
applied to prevent the tokens from attending to others across the packed example boundary. The number
of finetuning steps, learning rate, batch size, and dropout for each model are given in Appendix E. For
each model, we use a single checkpoint for all evaluations; the optimal step was chosen based on periodic
evaluations (every 2k to 10k steps depending the model size) of the held-out tasks, and we used the same
number of checkpoint steps across all ablation runs for a given model. Notably, the amount of compute used
for finetuning is only a small fraction relative to the training compute, as shown in Table 2. For example, we
only use 0.2% of the pre-training compute to instruction-finetune Flan-PaLM 540B (approximately 512 v4
TPU chips for 37 hours). We use the JAX-based T5X framework (Bradbury et al., 2018; Roberts et al., 2022).

4

• Find as many datasets as you
can → 1,836 tasks

• Convert them to text-to-text

• Mix-in instruction with or
without examples

- Directly fine-tuning for in-
context learning (more on
this later)

• Split for train/test along tasks

The Flan-PaLM Recipe
Instruction Tuning

13

8B 62B 540B
0

10

20

30

40

50

60

BB
H
ac
cu
ra
cy

(%
)

PaLM: Zero-shot
Flan-PaLM: Zero-shot

[Figure modified from Chung et al. 2022]

Test Performance on 23 BigBench tasks

• Emphasize data quality

• Hire third-party annotators

• Develop guidelines that match
the desired model behavior

• Llama 2 focus: helpfulness and
safety

• Collect 27,540 examples

• Goal: less the strongest possible
model, more good starting point
for RLHF

The Llama 2 Recipe
Instruction Tuning

14

new technique, Ghost Attention (GAtt), which we find helps control dialogue flow over multiple turns
(Section 3.3). See Section 4.2 for safety evaluations on fine-tuned models.

3.1 Supervised Fine-Tuning (SFT)

‰ Prompt: Write a poem to help me remember the first 10 elements on the periodic table, giving each
element its own line.

Response: Hydrogen comes first as element number one.
Helium is second for balloons to have fun!
In third place is Lithium to hold battery charge,
Followed by Beryllium in emeralds small and large.
Boron’s number five to help us keep things clean.
Carbon’s next at six, and it’s found in every gene.
Nitrogen is seven, found in every breath we take,
More than eight (or Oxygen) in atmospheric make.
Number nine is Fluorine, helping polish up our teeth.
Neon gives us glowing signs to read and stand beneath.

‰ Prompt: I want you to roast me. I want you to make it particularly brutal, swearing at me.
Response: I’m sorry, but I cannot comply with that request. Using vulgar language or intentionally

hurting someone’s feelings is never acceptable. Instead of asking for a roast, I suggest
focusing on positive and constructive feedback that can help you grow and improve as an
individual. If you’re looking for comedic relief, there are plenty of other ways to achieve
that without resorting to hurtful language or behavior.

Table 5: SFT annotation — example of a helpfulness (top) and safety (bottom) annotation for SFT, where the
annotator has written both the prompt and its answer.

Getting Started. To bootstrap, we started the SFT stage with publicly available instruction tuning
data (Chung et al., 2022), as utilized previously in Touvron et al. (2023).

Quality Is All You Need. Third-party SFT data is available from many di�erent sources, but we found that
many of these have insu�cient diversity and quality— in particular for aligning LLMs towards dialogue-style
instructions. As a result, we focused first on collecting several thousand examples of high-quality SFT data,
as illustrated in Table 5. By setting aside millions of examples from third-party datasets and using fewer but
higher-quality examples from our own vendor-based annotation e�orts, our results notably improved. These
findings are similar in spirit to Zhou et al. (2023), which also finds that a limited set of clean instruction-tuning
data can be su�cient to reach a high level of quality. We found that SFT annotations in the order of tens of
thousands was enough to achieve a high-quality result. We stopped annotating SFT after collecting a total of
27,540 annotations. Note that we do not include any Meta user data.
We also observed that di�erent annotation platforms and vendors can result in markedly di�erent down-
stream model performance, highlighting the importance of data checks even when using vendors to source
annotations. To validate our data quality, we carefully examined a set of 180 examples, comparing the annota-
tions provided by humans with the samples generated by the model through manual scrutiny. Surprisingly,
we found that the outputs sampled from the resulting SFT model were often competitive with SFT data
handwritten by human annotators, suggesting that we could reprioritize and devote more annotation e�ort
to preference-based annotation for RLHF.

Fine-Tuning Details. For supervised fine-tuning, we use a cosine learning rate schedule with an initial
learning rate of 2⇥ 10�5, a weight decay of 0.1, a batch size of 64, and a sequence length of 4096 tokens.
For the fine-tuning process, each sample consists of a prompt and an answer. To ensure the model sequence
length is properly filled, we concatenate all the prompts and answers from the training set. A special token is
utilized to separate the prompt and answer segments. We utilize an autoregressive objective and zero-out
the loss on tokens from the user prompt, so as a result, we backpropagate only on answer tokens. Finally, we
fine-tune the model for 2 epochs.

9

[Touvron et al. 2023]

Aligning LLMs

15
[Figure from Eric Mitchell]

Step 0:
Unsupervised pre-training

(tons of data; >1T tokens)

Step 1:
Supervised fine-tuning

on human demos

Step 2:
Fit a reward model

to human preferences
over samplesπSFT

Step 3:
Optimize a policy to

maximize learned rewards

πθ0
πθSFT

πθRL
rϕ

“Write a poem about jazz.”
…

X

Y
(prompts)

(human
demos)

Fine-tune

Fine-tune
Fine-tune

(xi, yi
w, yi

l)
(preference pairs)

Human!

X′

OptimizeSample!

Reinforcement Learning from Human Feedback
RLHF

16
[Figure from Eric Mitchell]

Step 0:
Unsupervised pre-training

(tons of data; >1T tokens)

Step 1:
Supervised fine-tuning

on human demos

Step 2:
Fit a reward model

to human preferences
over samplesπSFT

Step 3:
Optimize a policy to

maximize learned rewards

πθ0
πθSFT

πθRL
rϕ

“Write a poem about jazz.”
…

X

Y
(prompts)

(human
demos)

Fine-tune

Fine-tune
Fine-tune

(xi, yi
w, yi

l)
(preference pairs)

Human!

X′

OptimizeSample!

• First step: need annotated data

- So we have supervision for whatever learning we do

• Need to annotate examples if they are good or bad

• No good automated metrics, because the text looks really good

• So, need to ask humans to evaluate

The Data
RLHF

17

Asking Humans
RLHF Data

18
[Example from Eric Mitchell]

What are the steps for making a simple cake?

1. Warm up the oven.

2. Grease a cake pan.

3. Blend dry ingredients in a bowl.

4. Incorporate butter, milk, and vanilla.

5. Mix in the eggs.

6. Pour into the prepared pan.

7. Bake until golden brown.

8. Add frosting if desired.

Score the helpfulness of the following response, 1-10

Asking Humans
RLHF Data

19
[Example from Eric Mitchell]

Score the helpfulness of the following response, 1-10

What are the steps for making a simple cake?

1. Preheat oven to 350°F (175°C).

2. Grease and flour a cake pan.

3. In a bowl, combine 2 cups flour, 1.5 cups
sugar, 3.5 tsp baking powder, and a pinch
of salt.

4. Add 1/2 cup butter, 1 cup milk, and 2 tsp
vanilla; mix well.

5. Beat in 3 eggs, one at a time.

6. Pour batter into the pan.

7. Bake for 30-35 minutes or until a toothpick
comes out clean.

8. Let cool, then frost or serve as desired.

• Humans are very inconsistent for complex evaluation like free-
form text evaluation

- This would give a very noisy learning signal 😞

• Especially when the outputs all look really good

• What can we do?

Asking Humans
RLHF Data

20

Human Preferences
RLHF Data

21
[Example from Eric Mitchell]

What are the steps for making a simple cake?

1. Warm up the oven.

2. Grease a cake pan.

3. Blend dry ingredients in a bowl.

4. Incorporate butter, milk, and vanilla.

5. Mix in the eggs.

6. Pour into the prepared pan.

7. Bake until golden brown.

8. Add frosting if desired.

What are the steps for making a simple cake?

1. Preheat oven to 350°F (175°C).

2. Grease and flour a cake pan.

3. In a bowl, combine 2 cups flour, 1.5 cups
sugar, 3.5 tsp baking powder, and a pinch
of salt.

4. Add 1/2 cup butter, 1 cup milk, and 2 tsp
vanilla; mix well.

5. Beat in 3 eggs, one at a time.

6. Pour batter into the pan.

7. Bake for 30-35 minutes or until a toothpick
comes out clean.

8. Let cool, then frost or serve as desired.

Which of these two responses is more helpful?

• Instead of evaluating a single example

• Sample two outputs for the same input from the model

• And choose a winner

• We are still hiring annotators — these are not our users

• But, we get much more consistent data

• Formally, we get a dataset of inputs paired with a winning output
 and a losing output

x̄(i)

ȳ(i)
w ȳ(i)

l

{(x̄(i), ȳ(i)
w , ȳ(i)

l)}N
i=1

Human Preferences
RLHF Data

22

• Assume a dataset of inputs paired with a winning output
and a losing output

• We want to learn to generate outputs given inputs

• How do we learn from this data?

x̄(i) ȳ(i)
w

ȳ(i)
l

{(x̄(i), ȳ(i)
w , ȳ(i)

l)}N
i=1

ȳ x̄

Learning
RLHF

23

• Assume a dataset of inputs paired with a winning output
and a losing output

• We want to learn to generate outputs given inputs

• How do we learn from this data?

- Can we just pretend are annotated outputs?

- Do we just throw away ?

x̄(i) ȳ(i)
w

ȳ(i)
l

{(x̄(i), ȳ(i)
w , ȳ(i)

l)}N
i=1

ȳ x̄

ȳ(i)
w

ȳ(i)
l

Learning
RLHF

24

• Assume a dataset of inputs paired with a winning output
and a losing output

• We want to learn to generate outputs given inputs

• How do we learn from this data?

- Can we just pretend are annotated outputs?

- Do we just throw away ?

x̄(i) ȳ(i)
w

ȳ(i)
l

{(x̄(i), ȳ(i)
w , ȳ(i)

l)}N
i=1

ȳ x̄

ȳ(i)
w

ȳ(i)
l

Learning
RLHF

25

Why not?!

• Assume a dataset of inputs paired with a winning output
and a losing output

• Use this data to learn a model to score outputs

- Good outputs → high score, bad outputs → low score

- This will be our reward model

• Use this model in reinforcement learning to fine-tune your LM 🤯

x̄(i) ȳ(i)
w

ȳ(i)
l

{(x̄(i), ȳ(i)
w , ȳ(i)

l)}N
i=1

Learning
RLHF

26

• Markov decision process (MDP)

• Basic terminology (as much as we need)

• The learning objective

• REINFORCE (a simple gradient-based algorithm)

• Proximal policy optimization (PPO)

A Very Quick and Partial Introduction
Reinforcement Learning

27

• A formalization of a simple
sequential process

• An MDP is made of:

- : a set of states

- : an initial state ()

- : a set of actions

- : a transition function

- : a reward function

S

s0 s0 ∈ S

A

T
S × A → S

r S × A → ℝ

Markov Decision Process* (MDP)
Reinforcement Learning

28
* Deterministic and finite MDP

s0

s2

s1

S = {s0, s1, s2}
A = {a1, a2}
T(s0, a1) = s2

T(s0, a2) = s1

T(s1, a1) = s2…
T(s2, a2) = s1

r(s0, a1) = 1
r(s0, a2) = − 1
r(s1, a1) = 2
…
r(s2, a2) = 0

a1 a2

a2

a2

a1

a1
1

1
-1

-0.1

02

• An MDP is made of:

- : a set of states

- : an initial state ()

- : a set of actions

- : a transition function

- : a reward function

• At each time step the agent observes a
state , takes an action that
leads it to state following the
transition function and
receives a reward

S

s0 s0 ∈ S

A

T S × A → S

r S × A → ℝ

t
st ∈ S at ∈ A

st+1 ∈ S
T(st, at) = st+1
r(st, at)

Markov Decision Process* (MDP)
Reinforcement Learning

29
* Deterministic and finite MDP

s0

s2

s1

S = {s0, s1, s2}
A = {a1, a2}
T(s0, a1) = s2

T(s0, a2) = s1

T(s1, a1) = s2…
T(s2, a2) = s1

r(s0, a1) = 1
r(s0, a2) = − 1
r(s1, a1) = 2
…
r(s2, a2) = 0

a1 a2

a2

a2

a1

a1
1

1
-1

-0.1

02

• An MDP is a tuple

• At time the agent observes a
state , takes an action

, follows ,
and receives a reward

• The behavior of the agent (i.e.,
what action to take) is controlled
by a probabilistic policy
parameterized by :**

(S, s0, A, T, r)

t
st ∈ S

at ∈ A T(st, at) = st+1
r(st, at)

θ

at ∼ πθ(a |st)

MDP* and RL Terms
Reinforcement Learning

30 * Deterministic and finite MDP 
** There are also non-probabilistic formulations

s0

s2

s1

S = {s0, s1, s2}
A = {a1, a2}
T(s0, a1) = s2

T(s0, a2) = s1

T(s1, a1) = s2…
T(s2, a2) = s1

r(s0, a1) = 1
r(s0, a2) = − 1
r(s1, a1) = 2
…
r(s2, a2) = 0

a1 a2

a2

a2

a1

a1
1

1
-1

-0.1

02

• An MDP is a tuple

• At time the agent observes a state
, takes an action from the policy

, follows ,
and receives a reward

• We can talk about the total reward the
agent receives starting at time —
called return:**

• So starting from the start ():

(S, s0, A, T, r)

t
st ∈ S
at ∼ πθ(a |st) T(st, at) = st+1

r(st, at)

t

Gt = ∑∞
t′ =t r(st′ , at′)

t = 0

G0 = ∑∞
t′ =0 r(st′ , at′)

MDP* and RL Terms
Reinforcement Learning

31 * Deterministic and finite MDP 
** Non-discounted case (i.e.,)γ = 1

s0

s2

s1

S = {s0, s1, s2}
A = {a1, a2}
T(s0, a1) = s2

T(s0, a2) = s1

T(s1, a1) = s2…
T(s2, a2) = s1

r(s0, a1) = 1
r(s0, a2) = − 1
r(s1, a1) = 2
…
r(s2, a2) = 0

a1 a2

a2

a2

a1

a1
1

1
-1

-0.1

02

• An MDP is a tuple

• At time the agent observes a state
, takes an action from the policy

, follows ,
and receives a reward

• Total reward the agent receives starting
at time — called return:**

• The value function is the expected
return from a state under policy

(S, s0, A, T, r)

t
st ∈ S
at ∼ πθ(a |st) T(st, at) = st+1

r(st, at)

t

Gt = ∑∞
t′ =t r(st′ , at′)

s π

vπθ(s) = Eπθ
[Gt |s]

MDP* and RL Terms
Reinforcement Learning

32 * Deterministic and finite MDP 
** Non-discounted case (i.e.,)γ = 1

s0

s2

s1

S = {s0, s1, s2}
A = {a1, a2}
T(s0, a1) = s2

T(s0, a2) = s1

T(s1, a1) = s2…
T(s2, a2) = s1

r(s0, a1) = 1
r(s0, a2) = − 1
r(s1, a1) = 2
…
r(s2, a2) = 0

a1 a2

a2

a2

a1

a1
1

1
-1

-0.1

02

• The value function is the expected return from a state under
policy *,**

s
πθ

vπθ
(s) = Eπθ

[Gt |s]
= Eπθ

[r(s, a) + Gt+1 |s]

= ∑
a∈A

πθ(a |s)[r(s, a) + Eπθ
[Gt+1 |T(s, a)]]

= ∑
a∈A

πθ(a |s)[r(s, a) + vπθ
(T(s, a))]

Value Function Recursion
Reinforcement Learning

33 * Deterministic and finite MDP 
** Non-discounted case (i.e.,) γ = 1

• An MDP is a tuple

• At time the agent observes a state
, takes an action from the policy

, follows ,
and receives a reward

• Return:**

• Value function:

• A task is called episodic if it runs for a
finite number of time steps

• Then we can talk about a set of
termination states

(S, s0, A, T, r)

t
st ∈ S
at ∼ πθ(a |st) T(st, at) = st+1

r(st, at)

Gt = ∑∞
t′ =t r(st′ , at′)

vπθ(s) = Eπθ
[Gt |s]

S+ ⊂ S

MDP* and RL Terms
Reinforcement Learning

34 * Deterministic and finite MDP 
** Non-discounted case (i.e.,)γ = 1

s0

s2

s1

S = {s0, s1, s2}
A = {a1, a2}
T(s0, a1) = s2

T(s0, a2) = s1

T(s1, a1) = s2…
T(s2, a2) = s1

r(s0, a1) = 1
r(s0, a2) = − 1
r(s1, a1) = 2
…
r(s2, a2) = 0

a1 a2

a2

a2

a1

a1
1

1
-1

-0.1

02

• There are various RL methods

• Maybe the most common nowadays are policy gradient methods

• Maximize some performance measure via gradient ascent

• The most common performance measure is the value of the start state:

• So during learning we want to find such that

• One of the simplest algorithms to do this is REINFORCE [Williams 1992]

J(θ) = vπθ
(s0)

θ

θ = arg max
θ

J(θ) = arg max
θ

vπθ
(s0)

Policy Gradient Learning
Reinforcement Learning

35

• REINFORCE is a straight forward
derivation of the value function
objective

• While it gives an objective that
looks very similar to log-
likelihood, it is fundamentally
different — this is not about data
likelihood!

• See Sections 13.2 and 13.3 in
Sutton and Barto (second edition)

• Important method: Monte-Carlo
approximation 🎲

REINFORCE
Reinforcement Learning

36

13.2. The Policy Gradient Theorem 325

Proof of the Policy Gradient Theorem (episodic case)

With just elementary calculus and re-arranging of terms, we can prove the policy
gradient theorem from first principles. To keep the notation simple, we leave it
implicit in all cases that ⇡ is a function of ✓, and all gradients are also implicitly
with respect to ✓. First note that the gradient of the state-value function can be
written in terms of the action-value function as

rv⇡(s) = r
"
X

a

⇡(a|s)q⇡(s, a)

#
, for all s 2 S (Exercise 3.18)

=
X

a

h
r⇡(a|s)q⇡(s, a) + ⇡(a|s)rq⇡(s, a)

i
(product rule of calculus)

=
X

a

h
r⇡(a|s)q⇡(s, a) + ⇡(a|s)r

X

s0,r

p(s0, r |s, a)
�
r + v⇡(s0)

�i

(Exercise 3.19 and Equation 3.2)

=
X

a

h
r⇡(a|s)q⇡(s, a) + ⇡(a|s)

X

s0

p(s0 |s, a)rv⇡(s0)
i

(Eq. 3.4)

=
X

a

h
r⇡(a|s)q⇡(s, a) + ⇡(a|s)

X

s0

p(s0 |s, a) (unrolling)

X

a0

⇥
r⇡(a0|s0)q⇡(s0, a0) + ⇡(a0|s0)

X

s00

p(s00 |s0, a0)rv⇡(s00)
⇤i

=
X

x2S

1X

k=0

Pr(s!x, k, ⇡)
X

a

r⇡(a|x)q⇡(x, a),

after repeated unrolling, where Pr(s!x, k, ⇡) is the probability of transitioning
from state s to state x in k steps under policy ⇡. It is then immediate that

rJ(✓) = rv⇡(s0)

=
X

s

 1X

k=0

Pr(s0 !s, k, ⇡)

!
X

a

r⇡(a|s)q⇡(s, a)

=
X

s

⌘(s)
X

a

r⇡(a|s)q⇡(s, a) (box page 199)

=
X

s0

⌘(s0)
X

s

⌘(s)P
s0 ⌘(s0)

X

a

r⇡(a|s)q⇡(s, a)

=
X

s0

⌘(s0)
X

s

µ(s)
X

a

r⇡(a|s)q⇡(s, a) (Eq. 9.3)

/
X

s

µ(s)
X

a

r⇡(a|s)q⇡(s, a) (Q.E.D.)

• Input: differential
parameterized policy

• Output: parameters

• Hyper-parameters: step size

• Optimizing

πθ(a |s)

θ

α > 0

θ = arg max
θ

vπθ
(s0)

REINFORCE*
Reinforcement Learning

37
* Episodic version with no discount factor (i.e.,)γ = 1

While true:

For steps:

For steps:

t = 0,…, T

at ∼ πθ(a |st)

st+1 ← T(st, at)

rt ← r(st, at)

t = 0,…, T

G ← ∑T
k=t rt

θ ← θ + αG∇ln πθ(at |st)

REINFORCE* — Intuition
Reinforcement Learning

38
* Episodic version with no discount factor (i.e.,)γ = 1

While true:

For steps:

For steps:

t = 0,…, T

at ∼ πθ(a |st)

st+1 ← T(st, at)

rt ← r(st, at)

t = 0,…, T

G ← ∑T
k=t rt

θ ← θ + αG∇ln πθ(at |st)

• Given the same how do , ,
and differ between each round
of the outside loop?

• When is ?

• If what happens to the
probability immediately
after the update?

• And if ?

• How does this differ form
supervised learning?

s0 at st
rt

G > 0

G > 0
πθ(at |st)

G < 0

• PPO [Schulman et al. 2017] is a contemporary RL algorithm

• The most common choice for RLHF

• Empirically provides several advantages of REINFORCE

- Increased stability and reliability, reduction in gradient
estimates variance, and faster learning

• But, has more hyper-parameters and requires to estimate the
value function vπ(s)

Proximal Policy Optimization (PPO)
Reinforcement Learning

39

• PPO is an advantage actor-critic method

- actor-critic: the learning objective includes an estimated value
function to “critique” the policy (actor) actions

- advantage: instead of optimizing directly using rewards like
REINFORCE, updates rely on advantage

• Advantage is the benefit of taking an action at a state relative to
other actions at the same state*

Aπ(s, a) = r(s, a) + vπ(T(s, a))

qπ(s,a)*

− vπ(s)

Advantage Actor-critic
PPO

40
* Deterministic with no discount factor (i.e.,)γ = 1

• PPO balances between

- Significant changes to the policy (i.e., to increase expected
reward)

- Keeping the policy as close as possible to the original policy to
maintain stability

• It is based on optimizing a penalized objective

arg max
θ

Eπ[πθ(at |st)
πθold

(at |st)
̂A(s, a) − βKL[πθold

(⋅ |st), πθ(⋅ |st)]]

Reward Maximization Under Penalty
PPO

41

Input: initial policy parameters , initial value function parameters

for do

Collect set of trajectories by running the policy , and computing returns

Compute advantage estimates based on current value function estimate

Update the policy by maximizing the objective (init:):

Update the value function estimate by regression on the mean-squared error (init):

θ0 ϕ0

k = 0,1,2,…

Dk πθk
Gt

̂At vϕk

θ ← θk

θk+1 = arg maxθ
1

|Dk |T
∑(a,s, ̂A)∈Dk

min (πθ(s, a)
πθk(s,a)

̂A(s, a),

clamp(
πθ(s, a)
πθk(s,a)

,1 − ϵ,1 + ϵ) ̂A(s, a))
ϕ ← ϕk

ϕk+1 = arg minϕ
1

|Dk |T
∑(s,a,G)∈Dk

(vϕ(s) − G)2

PPO-Clip Pseudocode (simplified)
PPO

42
Pseudocode simplified from https://spinningup.openai.com/en/latest/algorithms/ppo.html

https://spinningup.openai.com/en/latest/algorithms/ppo.html

Input: initial policy parameters , initial value function parameters

for do

Collect set of trajectories by running the policy , and computing returns

Compute advantage estimates based on current value function estimate

Update the policy by maximizing the objective (init:):

Update the value function estimate by regression on the mean-squared error (init):

θ0 ϕ0

k = 0,1,2,…

Dk πθk
Gt

̂At vϕk

θ ← θk

θk+1 = arg maxθ
1

|Dk |T
∑(a,s, ̂A)∈Dk

min (πθ(s, a)
πθk(s,a)

̂A(s, a),

clamp(
πθ(s, a)
πθk(s,a)

,1 − ϵ,1 + ϵ) ̂A(s, a))
ϕ ← ϕk

ϕk+1 = arg minϕ
1

|Dk |T
∑(s,a,G)∈Dk

(vϕ(s) − G)2

PPO-Clip Pseudocode (simplified)
PPO

43
Pseudocode simplified from https://spinningup.openai.com/en/latest/algorithms/ppo.html

Aπ(s, a) = r(s, a) + vπ(T(s, a))

qπ(s,a)*

− vπ(s)

https://spinningup.openai.com/en/latest/algorithms/ppo.html

Input: initial policy parameters , initial value function parameters

for do

Collect set of trajectories by running the policy , and computing returns

Compute advantage estimates based on current value function estimate

Update the policy by maximizing the objective (init:):

Update the value function estimate by regression on the mean-squared error (init):

θ0 ϕ0

k = 0,1,2,…

Dk πθk
Gt

̂At vϕk

θ ← θk

θk+1 = arg maxθ
1

|Dk |T
∑(a,s, ̂A)∈Dk

min (πθ(s, a)
πθk(s,a)

̂A(s, a),

clamp(
πθ(s, a)
πθk(s,a)

,1 − ϵ,1 + ϵ) ̂A(s, a))
ϕ ← ϕk

ϕk+1 = arg minϕ
1

|Dk |T
∑(s,a,G)∈Dk

(vϕ(s) − G)2

PPO-Clip Pseudocode (simplified)
PPO

44
Pseudocode simplified from https://spinningup.openai.com/en/latest/algorithms/ppo.html

Aπ(s, a) = r(s, a) + vπ(T(s, a))

qπ(s,a)*

− vπ(s)

What does it mean that we
use advantage here instead

of rewards?

https://spinningup.openai.com/en/latest/algorithms/ppo.html

Input: initial policy parameters , initial value function parameters

for do

Collect set of trajectories by running the policy , and computing returns

Compute advantage estimates based on current value function estimate

Update the policy by maximizing the objective (init:):

Update the value function estimate by regression on the mean-squared error (init):

θ0 ϕ0

k = 0,1,2,…

Dk πθk
Gt

̂At vϕk

θ ← θk

θk+1 = arg maxθ
1

|Dk |T
∑(a,s, ̂A)∈Dk

min (πθ(s, a)
πθk(s,a)

̂A(s, a),

clamp(
πθ(s, a)
πθk(s,a)

,1 − ϵ,1 + ϵ) ̂A(s, a))
ϕ ← ϕk

ϕk+1 = arg minϕ
1

|Dk |T
∑(s,a,G)∈Dk

(vϕ(s) − G)2

PPO-Clip Pseudocode (simplified)
PPO

45
Pseudocode simplified from https://spinningup.openai.com/en/latest/algorithms/ppo.html

Aπ(s, a) = r(s, a) + vπ(T(s, a))

qπ(s,a)*

− vπ(s)

What does it mean that we
use advantage here instead

of rewards?

What happens when the policy puts all
the probability on one action for a

specific state? Why is it good?

https://spinningup.openai.com/en/latest/algorithms/ppo.html

Input: initial policy parameters , initial value function parameters

for do

Collect set of trajectories by running the policy , and computing returns

Compute advantage estimates based on current value function estimate

Update the policy by maximizing the objective (init:):

Update the value function estimate by regression on the mean-squared error (init):

θ0 ϕ0

k = 0,1,2,…

Dk πθk
Gt

̂At vϕk

θ ← θk

θk+1 = arg maxθ
1

|Dk |T
∑(a,s, ̂A)∈Dk

min (πθ(s, a)
πθk(s,a)

̂A(s, a),

clamp(
πθ(s, a)
πθk(s,a)

,1 − ϵ,1 + ϵ) ̂A(s, a))
ϕ ← ϕk

ϕk+1 = arg minϕ
1

|Dk |T
∑(s,a,G)∈Dk

(vϕ(s) − G)2

PPO-Clip Pseudocode (simplified)
PPO

46
Pseudocode simplified from https://spinningup.openai.com/en/latest/algorithms/ppo.html

What does it mean when the ratio is
really big? Or really small?

https://spinningup.openai.com/en/latest/algorithms/ppo.html

Input: initial policy parameters , initial value function parameters

for do

Collect set of trajectories by running the policy , and computing returns

Compute advantage estimates based on current value function estimate

Update the policy by maximizing the objective (init:):

Update the value function estimate by regression on the mean-squared error (init):

θ0 ϕ0

k = 0,1,2,…

Dk πθk
Gt

̂At vϕk

θ ← θk

θk+1 = arg maxθ
1

|Dk |T
∑(a,s, ̂A)∈Dk

min (πθ(s, a)
πθk(s,a)

̂A(s, a),

clamp(
πθ(s, a)
πθk(s,a)

,1 − ϵ,1 + ϵ) ̂A(s, a))
ϕ ← ϕk

ϕk+1 = arg minϕ
1

|Dk |T
∑(s,a,G)∈Dk

(vϕ(s) − G)2

PPO-Clip Pseudocode (simplified)
PPO

47
Table from Bick 2021: https://fse.studenttheses.ub.rug.nl/25709/1/mAI_2021_BickD.pdf

Let’s say we lowered the probability of
the action () and the

advantage is telling us to push it
further down. What will PPO do?

pt(θ) < 1 − ϵ
̂A < 0

the case, destructively large weight updates could result due to the increasingly larger divergence between
the two states of the policy indicated by the probability ratio considerably diverging from value 1 already.

Now, consider the two cases where pt(✓) > 1 + ✏. Also here, the behavior of LCLIP depends on whether
the advantage estimate At is positive or negative.

Consider the case where At > 0 while pt(✓) > 1+ ✏. In this case, the probability of choosing an action at
associated with a positive advantage estimate At in state st has become considerably larger already under
the current policy than it used to be under the old state of the policy. This is indicated by the condition
pt(✓) > 1 + ✏. In this case, clipping applies and the minimum operator will return the clipped objective as
its minimal input value. Thus, since the overall objective value is clipped, only the zero-gradient will result
from a training example where At > 0 while pt(✓) > 1 + ✏. Also in this case, destructively large weight
updates are supposed to be prevented through the resulting zero-gradient, as explained above already.

Lastly, consider the case where the advantage estimate is negative, i.e. At < 0, while pt(✓) > 1 + ✏.
In such a case, the probability of selecting an action at in a state st has become considerably larger under
the current state of the policy than it used to be under the old state, while choosing action at in state
st led to a worse outcome than expected, as indicated by the negative advantage estimate At. Here, the
clipped objective will evaluate to the negative value (1 + ✏)At, while the unclipped objective will evaluate
to a negative value pt(✓)At of magnitude larger than (1 + ✏)At. Consequently, the minimum operator will
return the unclipped objective, pt(✓)At, being of larger magnitude in the negative direction. Therefore, a
training example satisfying the conditions At < 0 and pt(✓) > 1 + ✏ will be associated with a non-zero
gradient pointing into the direction maximizing the negative value pt(✓)At. This is to rigorously correct the
behavior of the policy in the case that an action has become more likely in a given state, potentially as a
byproduct of updating the policy on other training examples, even though past experience has indicated that
the chosen action was worse than expected in the given state in terms of the experienced advantage estimate.
Here, no means of preventing destructively large weight updates applies. Also, in this way, the objective
function LCLIP aims at yielding a pessimistic estimate of the policy’s performance. Drastic contributions
to the objective value are only admissible if they make the valuation of the objective worse, but are clipped,
i.e. bounded, when they would lead to an improvement of the objective value [6].

pt(✓) > 0 At
Return Value
of min

Objective
is Clipped

Sign of
Objective Gradient

pt(✓) 2 [1� ✏, 1 + ✏] + pt(✓)At no + X
pt(✓) 2 [1� ✏, 1 + ✏] � pt(✓)At no � X
pt(✓) < 1� ✏ + pt(✓)At no + X
pt(✓) < 1� ✏ � (1� ✏)At yes � 0
pt(✓) > 1 + ✏ + (1 + ✏)At yes + 0
pt(✓) > 1 + ✏ � pt(✓)At no � X

Table 1: Table summarizing the behavior of PPO’s objective function LCLIP for all non-trivial cases, where
both pt(✓) and At are unequal zero. The first column indicates the value of the probability ratio pt(✓), while
the second column indicates whether the advantage estimate At is positive (+) or negative (�) for a given
training example (indexed by subscript t) taken from a minibatch of training examples. The third column
indicates the output of LCLIP , i.e. the return value of LCLIP ’s minimum operator for the minibatch example
indexed by subscript t. The fourth column indicates whether this term, i.e. the output of LCLIP , is a clipped
term (yes) or not (no). The fifth column indicates whether the sign of the value returned by LCLIP is positive
(+) or negative (�). The last column indicates whether the gradient resulting from back-propagating LCLIP

aims at maximizing the value returned by LCLIP (X) or whether only the trivial zero-gradient (0) results.

3.5 Exploration Strategies

In DRL, the exploration-exploitation dilemma refers to the problem of balancing how much a learning agent
explores its environment by taking novel actions in the states it encounters and how much the agent chooses

19

pt(θ) =
πθ(s, a)
πθk

(s, a)

At = ̂A

https://fse.studenttheses.ub.rug.nl/25709/1/mAI_2021_BickD.pdf

Input: initial policy parameters , initial value function parameters

for do

Collect set of trajectories by running the policy , and computing returns

Compute advantage estimates based on current value function estimate

Update the policy by maximizing the objective (init:):

Update the value function estimate by regression on the mean-squared error (init):

θ0 ϕ0

k = 0,1,2,…

Dk πθk
Gt

̂At vϕk

θ ← θk

θk+1 = arg maxθ
1

|Dk |T
∑(a,s, ̂A)∈Dk

min (πθ(s, a)
πθk(s,a)

̂A(s, a),

clamp(
πθ(s, a)
πθk(s,a)

,1 − ϵ,1 + ϵ) ̂A(s, a))
ϕ ← ϕk

ϕk+1 = arg minϕ
1

|Dk |T
∑(s,a,G)∈Dk

(vϕ(s) − G)2

PPO-Clip Pseudocode (simplified)
PPO

48
Pseudocode simplified from https://spinningup.openai.com/en/latest/algorithms/ppo.html

Why are we trying to
get the value

estimate to be equal
to ?G

https://spinningup.openai.com/en/latest/algorithms/ppo.html

• PPO is notoriously complex to work with

- It requires learning a separate value function

- Two internal optimizations loops — learning rate? number of
epochs? optimizer?

- So has quite a few hyper-parameters, and turns out PPO is
very sensitive to them

- See: The 37 Implementation Details of Proximal Policy
Optimization

vϕ

PPO

49

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

• Intuitively, the LMs we discussed so far are all autoregressive

• The token-by-token process is sequential decision process

• This naturally lends itself for an MDP formulation

• But: this is not what is done in practice

• The RL process does not see the token-by-token generation
process at all!

The MDP
RL in RLHF

50

• The LM MDP is a tuple

- States : all possible strings

- Start states : all possible prefix prompts

- Actions : all completions, so all generated tokens for an
example are considered a single action as far as the RL MDP

- The transition function is simple: a simple
concatenation

- Reward function : ???

(S, s0, A, T, r)

S

s0

A

T T(s, a) = [s; a]

r

The RLHF MDP

51

• An action space the size of the vocabulary
would be huge

- But this is much larger

- Makes the value function hard to
evaluate — Why? Is it relevant to our
regression objective?

• Everything is generated at once, as far as
the learner is concerned

- No consideration of the gradual
generation

• This is actually a restricted form of RL
called contextual bandit

The RLHF MDP

52

• States : all possible strings

• Start states : all possible prefix
prompts

• Actions : all completions, so all
generated tokens for an example are
considered a single action as far as
the RL MDP

• The transition function is simple:
 a simple

concatenation

• Reward function : ???

S

s0

A

T
T(s, a) = [s; a]

r

• RL requires a reward function

• In the LLM formulation we just introduced: input is just text, including the
prompt and the output completion

• We are going to learn it, so it’s parametrized by

• Our data: inputs paired with a winning output and a losing output

• How do we get a function from this data?

r : S × A → ℝ

ψ

rψ([x̄; ȳ]) → ℝ

x̄(i) ȳ(i)
w ȳ(i)

l

{(x̄(i), ȳ(i)
w , ȳ(i)

l)}N
i=1

The Reward Model
RLHF

53

• Goal: estimate such that

• Data: inputs paired winning and
losing outputs

• The Bradley-Terry Model connects scores to preferences :

• If we can recover these scores, we can just use them as rewards

ψ rψ([x̄; ȳ]) → ℝ

𝒟 = {(x̄(i), ȳ(i)
w , ȳ(i)

l)}N
i=1 x̄(i) ȳ(i)

w
ȳ(i)

l

s(⋅) ≻

p(a ≻ b) = σ(s(a) − s(b))

Bradley-Terry Model
Reward Model

54

• The Bradley-Terry Model connects scores to preferences :

• We can directly minimize the negative log likelihood of this model

• This gives us a relatively straightforward supervised learning
problem (even if a pretty hard one)

s(⋅) ≻

p(a ≻ b) = σ(s(a) − s(b))

ℒr(ψ, 𝒟) = − E(x̄,ȳw,ȳl)∼𝒟[log p(ȳw ≻ ȳl)]
= − E(x̄,ȳw,ȳl)∼𝒟[log σ(rψ([x̄; ȳw]) − rψ([x̄; ȳl]))]

Bradley-Terry Model
Reward Model

55

• Llama 2 is a family of LLMs from Meta

• Ranging 7-70B parameters

• RLHF and reward model designs were customized to some
degree, but overall follow the conventional recipe

• Meta wrote a report that provides relatively detailed insights into
some key steps in the process

Data and Performance — Llama 2
Reward Model

56
[Figure from the Llama 2 paper: Touvron et al. 2023

• The reward model is trained on large amount of data

• Combining various resources into one giant dataset

Data and Performance — Llama 2
Reward Model

57
[Figure from the Llama 2 paper: Touvron et al. 2023

Dataset
Num. of

Comparisons
Avg. # Turns
per Dialogue

Avg. # Tokens
per Example

Avg. # Tokens
in Prompt

Avg. # Tokens
in Response

Anthropic Helpful 122,387 3.0 251.5 17.7 88.4
Anthropic Harmless 43,966 3.0 152.5 15.7 46.4
OpenAI Summarize 176,625 1.0 371.1 336.0 35.1
OpenAI WebGPT 13,333 1.0 237.2 48.3 188.9
StackExchange 1,038,480 1.0 440.2 200.1 240.2
Stanford SHP 74,882 1.0 338.3 199.5 138.8
Synthetic GPT-J 33,139 1.0 123.3 13.0 110.3
Meta (Safety & Helpfulness) 1,418,091 3.9 798.5 31.4 234.1
Total 2,919,326 1.6 595.7 108.2 216.9

Table 6: Statistics of human preference data for reward modeling. We list both the open-source and
internally collected human preference data used for reward modeling. Note that a binary human preference
comparison contains 2 responses (chosen and rejected) sharing the same prompt (and previous dialogue).
Each example consists of a prompt (including previous dialogue if available) and a response, which is the
input of the reward model. We report the number of comparisons, the average number of turns per dialogue,
the average number of tokens per example, per prompt and per response. More details on Meta helpfulness
and safety data per batch can be found in Appendix A.3.1.

knows. This prevents cases where, for instance, the two models would have an information mismatch, which
could result in favoring hallucinations. The model architecture and hyper-parameters are identical to those
of the pretrained language models, except that the classification head for next-token prediction is replaced
with a regression head for outputting a scalar reward.

Training Objectives. To train the reward model, we convert our collected pairwise human preference data
into a binary ranking label format (i.e., chosen & rejected) and enforce the chosen response to have a higher
score than its counterpart. We used a binary ranking loss consistent with Ouyang et al. (2022):

Lranking = �log(�(r✓(x, yc)� r✓(x, yr))) (1)
where r✓(x, y) is the scalar score output for prompt x and completion y with model weights ✓. yc is the
preferred response that annotators choose and yr is the rejected counterpart.
Built on top of this binary ranking loss, we further modify it separately for better helpfulness and safety
reward models as follows. Given that our preference ratings is decomposed as a scale of four points (e.g.,
significantly better), as presented in Section 3.2.1, it can be useful to leverage this information to explicitly
teach the reward model to assign more discrepant scores to the generations that have more di�erences. To
do so, we further add a margin component in the loss:

Lranking = �log(�(r✓(x, yc)� r✓(x, yr)�m(r))) (2)
where the margin m(r) is a discrete function of the preference rating. Naturally, we use a large margin
for pairs with distinct responses, and a smaller one for those with similar responses (shown in Table 27).
We found this margin component can improve Helpfulness reward model accuracy especially on samples
where two responses are more separable. More detailed ablation and analysis can be found in Table 28 in
Appendix A.3.3.

Data Composition. We combine our newly collected data with existing open-source preference datasets
to form a larger training dataset. Initially, open-source datasets were used to bootstrap our reward models
while we were in the process of collecting preference annotation data. We note that in the context of RLHF in
this study, the role of reward signals is to learn human preference for L���� �-C��� outputs rather than
any model outputs. However, in our experiments, we do not observe negative transfer from the open-source
preference datasets. Thus, we have decided to keep them in our data mixture, as they could enable better
generalization for the reward model and prevent reward hacking, i.e. L���� �-C��� taking advantage of
some weaknesses of our reward, and so artificially inflating the score despite performing less well.
With training data available from di�erent sources, we experimented with di�erent mixing recipes for both
Helpfulness and Safety reward models to ascertain the best settings. After extensive experimentation, the

11

• The reward model was trained in an iterative process

• Intermediate models were used to pick examples to annotate for
preferences for later models (why?)

Data and Performance — Llama 2
Reward Model

58
[Figure from the Llama 2 paper: Touvron et al. 2023

Figure 6: Scaling trends for the reward model. More data and a larger-size model generally improve
accuracy, and it appears that our models have not yet saturated from learning on the training data.

We report the results in terms of accuracy in Table 7. As expected, our own reward models perform the best
on our internal test sets collected based on L���� �-C���, with the Helpfulness reward model performing
best on the Meta Helpfulness test set, and similarly the Safety reward model performing best on the Meta
Safety test set. Overall, our reward models outperform all of the baselines, including GPT-4. Interestingly,
GPT-4 performs better than other non-Meta reward models, despite not being trained directly nor targeting
specifically this reward modeling task.
The fact that helpfulness and safety performed the best on their own domain is potentially due to the tension
between the two objectives (i.e., being as helpful as possible versus refusing unsafe prompts when necessary),
which may confuse the reward model during training. In order for a single model to perform well on both
dimensions, it needs to not only learn to select the better response given a prompt but also to distinguish
adversarial prompts from safe ones. As a result, optimizing two separate models eases the reward modeling
task. More detailed analysis on this tension between safety and helpfulness can be found in Appendix A.4.1.
When we group the scores by preference rating in Table 8, we can see that the accuracy is superior for the
“significantly better” test set and degrades gradually as comparison pairs become more similar (e.g., “slightly
better”). It is expected that learning to model human preferences becomes challenging when deciding
between two similar model responses, due to annotator subjectivity and their reliance on nuanced details
that may di�erentiate responses. We emphasize that the accuracy on more distinct responses matters the
most to improve L���� �-C��� performance. The human preference annotation agreement rate is also higher
on more distinct responses than similar pairs.

Scaling Trends. We study the scaling trends in terms of data and model size for the reward model, fine-
tuning di�erent model sizes on an increasing amount of the reward model data collected each week (see the
details on volume per batch in Table 26). Figure 6 reports these trends, showing the expected result that larger
models obtain higher performance for a similar volume of data. More importantly, the scaling performance
has not yet plateaued given the existing volume of data annotation used for training, a signal that there is
room for more improvement with more annotations. We note that reward model accuracy is one of the most
important proxies for the final performance of L���� �-C���. While best practices for comprehensively
evaluating a generative model is an open research question, the ranking task of the reward has no ambiguity.
Therefore, everything else being equal, an improvement of the reward model can be directly translated into
an improvement for L���� �-C���.

3.2.3 Iterative Fine-Tuning

As we received more batches of human preference data annotation, we were able to train better reward
models and collect more prompts. We therefore trained successive versions for RLHF models, referred to
here as RLHF-V1, . . . , RLHF-V5.
We explored RLHF fine-tuning with two main algorithms:

13

• InstructGPT is the results of
applying RLHF to GPT-3

• Evaluation: win rate according
to humans against a 175B SFT
model

• Humans prefer 1.3B RLHF
model to 175B SFT model

• Gains consistent across model
scales

InstructGPT Results
RLHF

59
[Ouyang et al. 2022]

Figure 1: Human evaluations of various models on our API prompt distribution, evaluated by how
often outputs from each model were preferred to those from the 175B SFT model. Our InstructGPT
models (PPO-ptx) as well as its variant trained without pretraining mix (PPO) significantly outperform
the GPT-3 baselines (GPT, GPT prompted); outputs from our 1.3B PPO-ptx model are preferred to
those from the 175B GPT-3. Error bars throughout the paper are 95% confidence intervals.

used for many recent large LMs—predicting the next token on a webpage from the internet—is
different from the objective “follow the user’s instructions helpfully and safely” (Radford et al., 2019;
Brown et al., 2020; Fedus et al., 2021; Rae et al., 2021; Thoppilan et al., 2022). Thus, we say that
the language modeling objective is misaligned. Averting these unintended behaviors is especially
important for language models that are deployed and used in hundreds of applications.

We make progress on aligning language models by training them to act in accordance with the user’s
intention (Leike et al., 2018). This encompasses both explicit intentions such as following instructions
and implicit intentions such as staying truthful, and not being biased, toxic, or otherwise harmful.
Using the language of Askell et al. (2021), we want language models to be helpful (they should
help the user solve their task), honest (they shouldn’t fabricate information or mislead the user), and
harmless (they should not cause physical, psychological, or social harm to people or the environment).
We elaborate on the evaluation of these criteria in Section 3.6.

We focus on fine-tuning approaches to aligning language models. Specifically, we use reinforcement
learning from human feedback (RLHF; Christiano et al., 2017; Stiennon et al., 2020) to fine-tune
GPT-3 to follow a broad class of written instructions (see Figure 2). This technique uses human
preferences as a reward signal to fine-tune our models. We first hire a team of 40 contractors to label
our data, based on their performance on a screening test (see Section 3.4 and Appendix B.1 for more
details). We then collect a dataset of human-written demonstrations of the desired output behavior
on (mostly English) prompts submitted to the OpenAI API3 and some labeler-written prompts, and
use this to train our supervised learning baselines. Next, we collect a dataset of human-labeled
comparisons between outputs from our models on a larger set of API prompts. We then train a reward
model (RM) on this dataset to predict which model output our labelers would prefer. Finally, we
use this RM as a reward function and fine-tune our supervised learning baseline to maximize this
reward using the PPO algorithm (Schulman et al., 2017). We illustrate this process in Figure 2. This
procedure aligns the behavior of GPT-3 to the stated preferences of a specific group of people (mostly
our labelers and researchers), rather than any broader notion of “human values”; we discuss this
further in Section 5.2. We call the resulting models InstructGPT.

We mainly evaluate our models by having our labelers rate the quality of model outputs on our test
set, consisting of prompts from held-out customers (who are not represented in the training data).
We also conduct automatic evaluations on a range of public NLP datasets. We train three model

3Specifically, we train on prompts submitted to earlier versions of the InstructGPT models on the OpenAI
API Playground, which were trained only using demonstration data. We filter out prompts containing PII.

2

RLHF

60
[Figure from Eric Mitchell]

Step 0:
Unsupervised pre-training

(tons of data; >1T tokens)

Step 1:
Supervised fine-tuning

on human demos

Step 2:
Fit a reward model

to human preferences
over samplesπSFT

Step 3:
Optimize a policy to

maximize learned rewards

πθ0
πθSFT

πθRL
rϕ

“Write a poem about jazz.”
…

X

Y
(prompts)

(human
demos)

Fine-tune

Fine-tune
Fine-tune

(xi, yi
w, yi

l)
(preference pairs)

Human!

X′

OptimizeSample!

• A pretty complex process

• Hard to get it to work — both reward modeling and RL

• Very costly — both compute and data annotation

• But, works really well

• Basically all SOTA models at this point go through RLHF

• There are a lot of tricky implementation details

Takeaways
RLHF

61

https://iclr-blogposts.github.io/2024/blog/the-n-implementation-details-of-rlhf-with-ppo/

• The entire process is based on fixed annotated data

• There is no other source of learning signal

• Can we just think of the entire process as a supervised learning
problem?

{(x̄(i), ȳ(i)
w , ȳ(i)

l)}N
i=1

RLHF Revisit

62

• Adopt an alternative offline RL setup

- Offline RL uses a static set of trajectories with rewards, rather than
new trajectories during learning (like we saw in REINFORCE and PPO)

• Restrict the reward to a specific form

• Combine the reward learning objective with an RL objective to directly
optimize a policy

At a High Level
Direct Policy Optimization (DPO)

63
[Rafailov et al. 2023]

Figure 1: DPO optimizes for human preferences while avoiding reinforcement learning. Existing methods
for fine-tuning language models with human feedback first fit a reward model to a dataset of prompts and
human preferences over pairs of responses, and then use RL to find a policy that maximizes the learned reward.
In contrast, DPO directly optimizes for the policy best satisfying the preferences with a simple classification
objective, fitting an implicit reward model whose corresponding optimal policy can be extracted in closed form.

we will show that the RL-based objective used by existing methods can be optimized exactly with a
simple binary cross-entropy objective, greatly simplifying the preference learning pipeline.

At a high level, existing methods instill the desired behaviors into a language model using curated
sets of human preferences representing the types of behaviors that humans find safe and helpful. This
preference learning stage occurs after an initial stage of large-scale unsupervised pre-training on
a large text dataset. While the most straightforward approach to preference learning is supervised
fine-tuning on human demonstrations of high quality responses, the most successful class of methods
is reinforcement learning from human (or AI) feedback (RLHF/RLAIF; [12, 2]). RLHF methods fit
a reward model to a dataset of human preferences and then use RL to optimize a language model
policy to produce responses assigned high reward without drifting excessively far from the original
model. While RLHF produces models with impressive conversational and coding abilities, the RLHF
pipeline is considerably more complex than supervised learning, involving training multiple LMs and
sampling from the LM policy in the loop of training, incurring significant computational costs.

In this paper, we show how to directly optimize a language model to adhere to human preferences,
without explicit reward modeling or reinforcement learning. We propose Direct Preference Optimiza-
tion (DPO), an algorithm that implicitly optimizes the same objective as existing RLHF algorithms
(reward maximization with a KL-divergence constraint) but is simple to implement and straight-
forward to train. Intuitively, the DPO update increases the relative log probability of preferred to
dispreferred responses, but it incorporates a dynamic, per-example importance weight that prevents
the model degeneration that we find occurs with a naive probability ratio objective. Like existing
algorithms, DPO relies on a theoretical preference model (such as the Bradley-Terry model; [5]) that
measures how well a given reward function aligns with empirical preference data. However, while
existing methods use the preference model to define a preference loss to train a reward model and
then train a policy that optimizes the learned reward model, DPO uses a change of variables to define
the preference loss as a function of the policy directly. Given a dataset of human preferences over
model responses, DPO can therefore optimize a policy using a simple binary cross entropy objective,
producing the optimal policy to an implicit reward function fit to the preference data.

Our main contribution is Direct Preference Optimization (DPO), a simple RL-free algorithm for
training language models from preferences. Our experiments show that DPO is at least as effective
as existing methods, including PPO-based RLHF, for learning from preferences in tasks such as
sentiment modulation, summarization, and dialogue, using language models with up to 6B parameters.

2 Related Work

Self-supervised language models of increasing scale learn to complete some tasks zero-shot [31] or
with few-shot prompts [6, 25, 11]. However, their performance on downstream tasks and alignment
with user intent can be significantly improved by fine-tuning on datasets of instructions and human-
written completions [23, 36, 13, 39]. This ‘instruction-tuning’ procedure enables LLMs to generalize
to instructions outside of the instruction-tuning set and generally increase their usability [13]. Despite
the success of instruction tuning, relative human judgments of response quality are often easier to
collect than expert demonstrations, and thus subsequent works have fine-tuned LLMs with datasets of
human preferences, improving proficiency in translation [18], summarization [38, 49], story-telling
[49], and instruction-following [26, 32]. These methods first optimize a neural network reward
function for compatibility with the dataset of preferences under a preference model such as the

2

• DPO starts with a very similar RL objective to PPO

- Where is the SFT policy before we fine-tune it with
preference data

arg maxθ Ex̄∼𝒟,ȳ∼πθ(ȳ|x̄)[r(x̄, ȳ) − βKL[πθ(ȳ | x̄), π
ref

(ȳ | x̄)]]
πref

The RL Optimization Problem
DPO

64

• DPO starts with a very similar RL objective to PPO

- Where is the SFT policy before we fine-tune it with
preference data

arg maxθ Ex̄∼𝒟,ȳ∼πθ(ȳ|x̄)[r(x̄, ȳ) − βKL[πθ(ȳ | x̄), π
ref

(ȳ | x̄)]]
πref

The RL Optimization Problem
DPO

65

Maximize the expected
reward according to our
prompt data and policy

Penalize for the distribution
getting further from the

pre-RL distribution

• DPO starts with a very similar RL objective to PPO

• We know from existing work [Peters et al. 2007, Peng et. 2019] that the
optimal policy maintains

Where is the partition function (i.e., normalization constant)

• We can re-arrange this expression to get the reward function

arg maxθ Ex̄∼𝒟,ȳ∼πθ(ȳ|x̄)[r(x̄, ȳ) − βKL[πθ(ȳ | x̄), π
ref

(ȳ | x̄)]]

π*

π*(ȳ | x̄) = 1
Z(x̄) πref(ȳ | x̄)exp(1

β r(x̄, ȳ))
Z(x̄)

r(x̄, ȳ) = β log π*(ȳ | x̄)
πref(ȳ | x̄) + β log Z(x̄)

Derivation
DPO

66

• We can express the reward function:

• Why is this important?

r(x̄, ȳ) = β log π*(ȳ | x̄)
πref(ȳ | x̄) + β log Z(x̄)

Derivation
DPO

67

• We can express the reward function:

• Why is this important?

• Remember: the RLHF reward is the scoring function in the
Bradley-Terry preference model

r(x̄, ȳ) = β log π*(ȳ | x̄)
πref(ȳ | x̄) + β log Z(x̄)

s(⋅)

p(a ≻ b) = σ(s(a) − s(b))

Derivation
DPO

68

• We can express the reward function:

• So we can simply plug the above reward to the Bradley-Terry
model:

r(x̄, ȳ) = β log π*(ȳ | x̄)
πref(ȳ | x̄) + β log Z(x̄)

p(ȳw ≻ ȳl) = σ(β log
π*(ȳw | x̄)
πref(ȳw | x̄)

+ β log Z(x̄) − β log
π*(ȳl | x̄)
πref(ȳl | x̄)

− β log Z(x̄))
= σ(β log

π*(ȳw | x̄)
πref(ȳw | x̄)

− β log
π*(ȳl | x̄)
πref(ȳl | x̄))

Derivation
DPO

69

• If we use instead of and sum over out data, we directly get a
negative log-likelihood loss to optimize:

• The gradient for this loss is:

where

πθ π*

ℒDPO(θ) = − log ∏
(x̄,ȳw,ȳl)∈𝒟

p(yw ≻ yl)

= − E(x̄,ȳw,ȳl)∼𝒟[log σ(β log
πθ(ȳw | x̄)
πref(ȳw | x̄)

− β log
πθ(ȳl | x̄)
πref(ȳl | x̄))]

∇ℒDPO(θ) = − βE(x̄,ȳw,ȳl)∼𝒟[σ(̂rθ(x̄, ȳl) − ̂rθ(x̄, ȳw))[∇log πθ(ȳw | x̄) − ∇log πθ(ȳl | x̄)]]
̂r(x̄, ȳ) = β log

πθ(ȳ | x̄)
πref(ȳ | x̄)

Derivation
DPO

70

• The DPO gradient is:

where

∇ℒDPO(θ) =

−βE(x̄,ȳw,ȳl)∼𝒟[σ(̂rθ(x̄, ȳl) − ̂rθ(x̄, ȳw))[∇log πθ(ȳw | x̄) − ∇log πθ(ȳl | x̄)]]

̂r(x̄, ȳ) = β log
πθ(ȳ | x̄)
πref(ȳ | x̄)

Gradient Mechanis
DPO

71

 functions like a
“learning rate”
following the

strength of the
KL constraint

β

• The DPO gradient is:

where

∇ℒDPO(θ) =

−βE(x̄,ȳw,ȳl)∼𝒟[σ(̂rθ(x̄, ȳl) − ̂rθ(x̄, ȳw))[∇log πθ(ȳw | x̄) − ∇log πθ(ȳl | x̄)]]

̂r(x̄, ȳ) = β log
πθ(ȳ | x̄)
πref(ȳ | x̄)

Gradient Mechanis
DPO

72

 functions like a
“learning rate”
following the

strength of the
KL constraint

β
Per-example weight:

higher weight when the
reward model is wrong

• The DPO gradient is:

where

∇ℒDPO(θ) =

−βE(x̄,ȳw,ȳl)∼𝒟[σ(̂rθ(x̄, ȳl) − ̂rθ(x̄, ȳw))[∇log πθ(ȳw | x̄) − ∇log πθ(ȳl | x̄)]]

̂r(x̄, ȳ) = β log
πθ(ȳ | x̄)
πref(ȳ | x̄)

Gradient Mechanis
DPO

73

 functions like a
“learning rate”
following the

strength of the
KL constraint

β
Per-example weight:

higher weight when the
reward model is wrong

Increase likelihood
of preferred

example

Decrease
likelihood of
dispreferred

example

• Synthetic task: maximize positive sentiment

- Generate pairs of movies reviews using GPT2-XL

- Ground truth reward function (sentiment classifier) to get
preferences

- Fine-tune GPT2-XL as base model

• Focus on maximizing reward and sensitivity to KL constraint

Comparison to RLHF
DPO

74
[Rafailov et al. 2023]

• Experimented with multiple learning techniques:

- DPO: fine-tune base model using DPO on preference data

- Preferred-FT: fine-tune base model on chosen completions on the
preference dataset

- Unlikelihood: fine-tune base model to increase likelihood of
preferred completion, decrease likelihood of dispreferred completion

- PPO: fine-tune base model using PPO on learned reward model (i.e.,
RLHF)

- PPO-GT: fine-tune base model using PPO on ground truth reward
function

Comparison to RLHF
DPO

75
[Rafailov et al. 2023]

• DPO the most stable
across different KL values

• PPO doesn’t provide
optimal reward even when
given ground truth (GT)

• DPO improves over
supervised fine-tuning on
preferences

• Results are more complex
in more realistic scenarios

Reward-KL Trade-off
PPO

76

Figure 2: Left. The frontier of expected reward vs KL to the reference policy. DPO provides the highest expected
reward for all KL values, demonstrating the quality of the optimization. Right. TL;DR summarization win
rates vs. human-written summaries, using GPT-4 as evaluator. DPO exceeds PPO’s best-case performance on
summarization, while being more robust to changes in the sampling temperature.

6 Experiments

In this section, we empirically evaluate DPO’s ability to train policies directly from preferences. First,
in a well-controlled text-generation setting, we ask: how efficiently does DPO trade off maximizing
reward and minimizing KL-divergence with the reference policy, compared to common preference
learning algorithms such as PPO? Next, we evaluate DPO’s performance on larger models and more
difficult RLHF tasks, including summarization and dialogue. We find that with almost no tuning
of hyperparameters, DPO tends to perform as well or better than strong baselines like RLHF with
PPO as well as returning the best of N sampled trajectories under a learned reward function. Before
presenting these results, we describe the experimental set-up; additional details are in Appendix C.

Tasks. Our experiments explore three different open-ended text generation tasks. For all experiments,
algorithms learn a policy from a dataset of preferences D =

�
x(i), y(i)w , y(i)l

 N

i=1
. In controlled

sentiment generation, x is a prefix of a movie review from the IMDb dataset [22], and the policy
must generate y with positive sentiment. In order to perform a controlled evaluation, for this
experiment we generate preference pairs over generations using a pre-trained sentiment classifier,
where p(positive | x, yw) > p(positive | x, yl). For SFT, we fine-tune GPT-2-large until convergence
on reviews from the train split of the IMDB dataset (further details in App C.1). In summarization,
x is a forum post from Reddit; the policy must generate a summary y of the main points in the
post. Following prior work, we use the Reddit TL;DR summarization dataset [41] along with human
preferences gathered by Stiennon et al.. We use an SFT model fine-tuned on human-written forum
post summaries2 with the TRLX [42] framework for RLHF. The human preference dataset was
gathered by Stiennon et al. on samples from a different, but similarly-trained, SFT model. Finally, in
single-turn dialogue, x is a human query, which may be anything from a question about astrophysics
to a request for relationship advice. A policy must produce an engaging and helpful response y to
a user’s query; we use the Anthropic Helpful and Harmless dialogue dataset [1], containing 170k
dialogues between a human and an automated assistant. Each transcript ends with a pair of responses
generated by a large (although unknown) language model along with a preference label denoting
the human-preferred response. In this setting, no pre-trained SFT model is available; we therefore
fine-tune an off-the-shelf language model on only the preferred completions to form the SFT model.

Evaluation. Our experiments use two different approaches to evaluation. In order to analyze the
effectiveness of each algorithm in optimizing the constrained reward maximization objective, in the
controlled sentiment generation setting we evaluate each algorithm by its frontier of achieved reward
and KL-divergence from the reference policy; this frontier is computable because we have acccess to
the ground-truth reward function (a sentiment classifier). However, in the real world, the ground truth
reward function is not known; therefore, we evaluate algorithms with their win rate against a baseline
policy, using GPT-4 as a proxy for human evaluation of summary quality and response helpfulness
in the summarization and single-turn dialogue settings, respectively. For summarization, we use
reference summaries in the test set as the baseline; for dialogue, we use the preferred response in the

2https://huggingface.co/CarperAI/openai_summarize_tldr_sft

7

• RLHF and DPO both can be used to compute rewards

- RLHF: explicitly learns a reward model

- DPO: we can compute the reward using the base and fine-
tuned models

• We already saw that the Llama 2 reward model still leaves a lot of
room for improvement

• How do things look like more broadly?

rψ(x̄, ȳ)

̂r(x̄, ȳ) = β log
πθ(ȳ | x̄)
πref(ȳ | x̄)

Evaluating the Reward Model
RLHF vs. DPO

77

• A benchmark suite for reward models

• Follows a similar recipe as in GLUE and SuperGLUE with the
specific aim for evaluation reward models

Evaluating the Reward Model
RewardBecnh

78
[Lambert et al. 2024]

Figure 1: The scoring method of the REWARDBENCH evaluation suite. Each prompt is accompanied
by a chosen and rejected completion which are independently rated by a reward model.

constant, �, the base model probabilities, ⇡ref(y∂x), and a partition function Z(x):

r(x, y) = � log
⇡(y∂x)
⇡ref(y∂x) + � log Z(x). (3)

Given two completions to a prompt, we compare the rewards r(x, y1) and r(x, y2) as follows, where
the score is computed via the log ratios of ⇡:

log
⇡(y1∂x)
⇡ref(y1∂x) > log

⇡(y2∂x)
⇡ref(y2∂x) . (4)

4 The REWARDBENCH Benchmark

In this section, we detail the design philosophy and construction of the evaluation dataset. The
dataset is designed to provide a broad set of basic evaluations for reward models, covering chat, in-
struction following, coding, safety, and other important metrics for fine-tuned language models. The
REWARDBENCH dataset contains a combination of existing evaluation prompt-completion pairs,
and those curated for this project.

A good reward function, and therefore a good RM broadly, is one that stably assigns credit to the
classes of good or bad content.2 Given one verified answer that is better than another for factual
or clear qualitative reasons (e.g. typos), a good reward model will choose the correct one 100%
of the time. To evaluate this, each datapoint consists of a prompt and two completions, chosen
and rejected. For each prompt, the score of the reward model is computed. The prompt is then
categorized as a win if the score of the prompt with the verified chosen completion is higher than that
of the verified rejected completion, as shown in Fig. 1. Finally, we report accuracy for each subset as
the percentage of wins. For all the section scores of REWARDBENCH (e.g. Chat or Safety) except
Prior Sets, the average score is weighted per-prompt in the requisite subsets.

4.1 REWARDBENCH Dataset

The benchmark is broken down into five sections from different subsets – the first four compose
the REWARDBENCH dataset described in this section. We have broken down the dataset into these
subsections to create one final REWARDBENCH score in order to reasonably weigh different aspects
of an RM’s performance. The summary of the dataset is shown in Tab. 1 (see appendix B for full
details) At a high level, the subsets consist of the following:

1. Chat: Testing a reward model’s basic ability to distinguish a thorough and correct chat response
in open-ended generation. Prompts and chosen, rejected pairs are selected from AlpacaEval (Li

2There are more considerations on how to use a RM, but the initial notion of quality should be one that
agrees with curated data. Next, we can evaluate which RMs are best for downstream tasks such as RLHF.

5

Datasets
RewardBench

79
[Lambert et al. 2024]

Category Subset N Short Description

Chat AlpacaEval Easy 100 GPT4-Turbo vs. Alpaca 7bB from Li et al. (2023b)
358 total AlpacaEval Length 95 Llama 2 Chat 70B vs. Guanaco 13B completions

AlpacaEval Hard 95 Tulu 2 DPO 70B vs. Davinici003 completions
MT Bench Easy 28 MT Bench ratings 10s vs. 1s from Zheng et al. (2023)
MT Bench Medium 40 MT Bench completions rated 9s vs. 2-5s

Chat Hard MT Bench Hard 37 MT Bench completions rated 7-8s vs. 5-6
456 total LLMBar Natural 100 LLMBar chat comparisons from Zeng et al. (2023)

LLMBar Adver. Neighbor 134 LLMBar challenge comparisons via similar prompts
LLMBar Adver. GPTInst 92 LLMBar comparisons via GPT4 similar prompts
LLMBar Adver. GPTOut 47 LLMBar comparisons via GPT4 unhelpful response
LLMBar Adver. Manual 46 LLMBar manually curated challenge completions

Safety Refusals Dangerous 100 Preferring refusal to elicit dangerous responses
740 total Refusals Offensive 100 Preferring refusal to elicit offensive responses

XSTest Should Refuse 154 Prompts that should be refused Röttger et al. (2023)
XSTest Should Respond 250 Preferring responses to queries with trigger words
Do Not Answer 136 Questions that LLMs should refuse (Wang et al., 2023)

Reasoning PRM Math 447 Human vs. buggy LLM answers (Lightman et al., 2023)
1431 total HumanEvalPack CPP 164 Correct CPP vs. buggy code (Muennighoff et al., 2023)

HumanEvalPack Go 164 Correct Go code vs. buggy code
HumanEvalPack Javascript 164 Correct Javascript code vs. buggy code
HumanEvalPack Java 164 Correct Java code vs. buggy code
HumanEvalPack Python 164 Correct Python code vs. buggy code
HumanEvalPack Rust 164 Correct Rust code vs. buggy code

Prior Sets Anthropic Helpful 6192 Helpful split from test set of Bai et al. (2022a)
17.2k total Anthropic HHH 221 HHH validation data (Askell et al., 2021)

SHP 1741 Partial test set from Ethayarajh et al. (2022)
Summarize 9000 Test set from Stiennon et al. (2020)

Table 1: Summary of the dataset used in REWARDBENCH. Note: Adver. is short for Adverserial.

case is for only two completions to be shown with measurement of preference, such as win-loss-tie
or a Likert scale indicating the magnitude of preference between completions (Bai et al., 2022a),
though other methods for labeling exist, such as ranking in a batch of 4 to 7 answers (Ouyang et al.,
2022). The resulting data is transformed into a set of prompt-chosen-rejected trios, where the chosen
completion is preferred over the rejected completion for training.

Training a reward model involves training a classifier to predict the human preference probability,
pò, between two answers, as modeled by a Bradley-Terry model (Bradley and Terry, 1952):

p
ò(y1 U yx ∂ x) = exp(rò(x, y1))

exp(rò(x, y1)) + exp(rò(x, y2)) . (1)

Then, estimate the parameters of the reward model by optimizing the maximum likelihood loss as
follows:

L(✓,D) = E(x,ychosen,yrejected)⇥D◆log(1 + e
r✓(x,yrejected) � r✓(x,ychosen))⇡. (2)

For language models, the RM is often implemented by appending a linear layer to predict one logit
or removing the final decoding layers and replacing them with a linear layer. At inference time,
a trained reward model returns a scalar, such that P (y1 U y2 ∂x) ö er(x,y1) (which intuitively is
the probability that the completion would be a preferred response, but is trained indirectly via the
pairwise loss). Thus, a win between completions y1 and y2 is achieved when r(x, y1) > r(x, y2).

3.2 Direct Preference Optimization

Direct Preference Optimization solves the RLHF problem without needing to learn a separate reward
model. It arranges an reward function from the model probabilities, directly optimizes the RM, and
extracts a language model from it (Rafailov et al., 2023). The implicit reward used in DPO is a
function of the policy model probabilities (i.e. the model being trained), ⇡(y∂x), a regularization

4

RewardBench

80
[Lambert et al. 2024]

Reward Model Avg Chat
Chat
Hard Safety Reason

Prior
Sets

berkeley-nest/Starling-RM-34B 81.5 96.9 59.0 89.9 90.3 71.4
allenai/tulu-2-dpo-70b 77.0 97.5 60.8 85.1 88.9 52.8
mistralai/Mixtral-8x7B-Instruct-v0.1 75.8 95.0 65.2 76.5 92.1 50.3
berkeley-nest/Starling-RM-7B-alpha 74.7 98.0 43.5 88.6 74.6 68.6
NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO 73.9 91.6 62.3 81.7 81.2 52.7
HuggingFaceH4/zephyr-7b-alpha 73.6 91.6 63.2 70.0 89.6 53.5
NousResearch/Nous-Hermes-2-Mistral-7B-DPO 73.5 92.2 59.5 83.8 76.7 55.5
allenai/tulu-2-dpo-13b 72.9 95.8 56.6 78.4 84.2 49.5
openbmb/UltraRM-13b 71.3 96.1 55.2 45.8 81.9 77.2
HuggingFaceH4/zephyr-7b-beta 70.7 95.3 62.6 54.1 89.6 52.2
allenai/tulu-2-dpo-7b 70.4 97.5 54.6 74.3 78.1 47.7
stabilityai/stablelm-zephyr-3b 70.1 86.3 58.2 74.0 81.3 50.7
HuggingFaceH4/zephyr-7b-gemma-v0.1 66.6 95.8 51.5 55.1 79.0 51.7
Qwen/Qwen1.5-72B-Chat 66.2 62.3 67.3 71.8 87.4 42.3
allenai/OLMo-7B-Instruct 66.1 89.7 48.9 64.1 76.3 51.7
IDEA-CCNL/Ziya-LLaMA-7B-Reward 66.0 88.0 41.3 62.5 73.7 64.6
stabilityai/stablelm-2-zephyr-1 6b 65.9 96.6 46.6 60.0 77.4 48.7
Qwen/Qwen1.5-14B-Chat 65.8 57.3 67.4 77.2 85.9 41.2
Qwen/Qwen1.5-7B-Chat 65.6 53.6 69.8 75.3 86.4 42.9
OpenAssistant/oasst-rm-2.1-pythia-1.4b-epoch-2.5 65.1 88.5 47.8 62.1 61.4 65.8
Random 50.0 50.0 50.0 50.0 50.0 50.0

Table 2: Top-20 Leaderboard results in REWARDBENCH. Evaluating many RMs shows that there is
still large variance in RM training and potential for future improvement across the more challeng-
ing instruction and reasoning tasks. Icons refer to model types: Sequence Classifier (), Direct
Preference Optimization (), and a random model ().

et al., 2023b) and MT Bench (Zheng et al., 2023) completions, two popular open-ended chat
evaluation tools.

2. Chat Hard: Testing a reward model’s abilities to understand trick questions and subtly different
instruction responses. Prompts and chosen, rejected pairs are selected from MT Bench exam-
ples with similar ratings and adversarial data specifically for fooling LLM-as-a-judge tools from
LLMBar’s evaluation set (Zeng et al., 2023) (reformatted for RMs).

3. Safety: Testing the models’ tendencies to refuse dangerous content and to avoid incorrect re-
fusals to similar trigger words. Prompts and chosen, rejected pairs are selected from custom
versions of the datasets XSTest (Röttger et al., 2023), Do-Not-Answer (Wang et al., 2023), and
examples from an in-development refusals dataset at AI2, where the chosen response is a refusal
and the rejected is harmful text of either dangerous or offensive nature.

4. Reasoning: Evaluating the models code and reasoning abilities. Code prompts are created by
reformatting HumanEvalPack examples with correct code as chosen and rejected as one with
bugs (Muennighoff et al., 2023). Reasoning prompts pair reference answers with incorrect model
generations from the PRM800k dataset (Lightman et al., 2023).

5. Prior Sets: For consistency with recent work on training reward models, we average perfor-
mance over test sets from existing preference datasets. We use the Anthropic Helpful split (Bai
et al., 2022a) (the only multi-turn data), the Anthropic HHH subset of BIG-Bench (Askell et al.,
2021), a curated subset of the test set from the Stanford Human Preferences (SHP) Dataset (Etha-
yarajh et al., 2022), and OpenAI’s Learning to Summarize Dataset (Stiennon et al., 2020).3

3The dataset with more test sets and details is found here: https://huggingface.co/datasets/
allenai/preference-test-sets

6

• DPO models are more
common (with open models)

- Because they are easier to
get to work for the complete
RLHF process

• But explicit reward models can
still be stronger

- Thereby giving PPO later on
a strong signal

RewardBench

81
[Lambert et al. 2024]

Reward Model Avg Chat
Chat
Hard Safety Reason

Prior
Sets

berkeley-nest/Starling-RM-34B 81.5 96.9 59.0 89.9 90.3 71.4
allenai/tulu-2-dpo-70b 77.0 97.5 60.8 85.1 88.9 52.8
mistralai/Mixtral-8x7B-Instruct-v0.1 75.8 95.0 65.2 76.5 92.1 50.3
berkeley-nest/Starling-RM-7B-alpha 74.7 98.0 43.5 88.6 74.6 68.6
NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO 73.9 91.6 62.3 81.7 81.2 52.7
HuggingFaceH4/zephyr-7b-alpha 73.6 91.6 63.2 70.0 89.6 53.5
NousResearch/Nous-Hermes-2-Mistral-7B-DPO 73.5 92.2 59.5 83.8 76.7 55.5
allenai/tulu-2-dpo-13b 72.9 95.8 56.6 78.4 84.2 49.5
openbmb/UltraRM-13b 71.3 96.1 55.2 45.8 81.9 77.2
HuggingFaceH4/zephyr-7b-beta 70.7 95.3 62.6 54.1 89.6 52.2
allenai/tulu-2-dpo-7b 70.4 97.5 54.6 74.3 78.1 47.7
stabilityai/stablelm-zephyr-3b 70.1 86.3 58.2 74.0 81.3 50.7
HuggingFaceH4/zephyr-7b-gemma-v0.1 66.6 95.8 51.5 55.1 79.0 51.7
Qwen/Qwen1.5-72B-Chat 66.2 62.3 67.3 71.8 87.4 42.3
allenai/OLMo-7B-Instruct 66.1 89.7 48.9 64.1 76.3 51.7
IDEA-CCNL/Ziya-LLaMA-7B-Reward 66.0 88.0 41.3 62.5 73.7 64.6
stabilityai/stablelm-2-zephyr-1 6b 65.9 96.6 46.6 60.0 77.4 48.7
Qwen/Qwen1.5-14B-Chat 65.8 57.3 67.4 77.2 85.9 41.2
Qwen/Qwen1.5-7B-Chat 65.6 53.6 69.8 75.3 86.4 42.9
OpenAssistant/oasst-rm-2.1-pythia-1.4b-epoch-2.5 65.1 88.5 47.8 62.1 61.4 65.8
Random 50.0 50.0 50.0 50.0 50.0 50.0

Table 2: Top-20 Leaderboard results in REWARDBENCH. Evaluating many RMs shows that there is
still large variance in RM training and potential for future improvement across the more challeng-
ing instruction and reasoning tasks. Icons refer to model types: Sequence Classifier (), Direct
Preference Optimization (), and a random model ().

et al., 2023b) and MT Bench (Zheng et al., 2023) completions, two popular open-ended chat
evaluation tools.

2. Chat Hard: Testing a reward model’s abilities to understand trick questions and subtly different
instruction responses. Prompts and chosen, rejected pairs are selected from MT Bench exam-
ples with similar ratings and adversarial data specifically for fooling LLM-as-a-judge tools from
LLMBar’s evaluation set (Zeng et al., 2023) (reformatted for RMs).

3. Safety: Testing the models’ tendencies to refuse dangerous content and to avoid incorrect re-
fusals to similar trigger words. Prompts and chosen, rejected pairs are selected from custom
versions of the datasets XSTest (Röttger et al., 2023), Do-Not-Answer (Wang et al., 2023), and
examples from an in-development refusals dataset at AI2, where the chosen response is a refusal
and the rejected is harmful text of either dangerous or offensive nature.

4. Reasoning: Evaluating the models code and reasoning abilities. Code prompts are created by
reformatting HumanEvalPack examples with correct code as chosen and rejected as one with
bugs (Muennighoff et al., 2023). Reasoning prompts pair reference answers with incorrect model
generations from the PRM800k dataset (Lightman et al., 2023).

5. Prior Sets: For consistency with recent work on training reward models, we average perfor-
mance over test sets from existing preference datasets. We use the Anthropic Helpful split (Bai
et al., 2022a) (the only multi-turn data), the Anthropic HHH subset of BIG-Bench (Askell et al.,
2021), a curated subset of the test set from the Stanford Human Preferences (SHP) Dataset (Etha-
yarajh et al., 2022), and OpenAI’s Learning to Summarize Dataset (Stiennon et al., 2020).3

3The dataset with more test sets and details is found here: https://huggingface.co/datasets/
allenai/preference-test-sets

6

• Goal: language model that can produce continuations that
appear reasonable in a live conversation with a user

• Problems with expecting this from base LLMs:

- Not trained on a lot of dialogue data (not really what you get
from web text)

- Dialogue is a complex dynamic process

The Case of Conversational Behavior
Targeted LLM Fine-tuning

82

• Main idea: collect data from LLM-user interactions, and fine-tune

- Several thousand dialogues between LaMDA and humans

- Other annotators rate conversations on different metrics

• Automatic data annotation

- Fine-tune an LLM to predict ratings of candidate responses in new dialogues

- Use new model to label utterances in pre-training dataset

• Conversational fine-tuning

- Filter pre-training data to those labeled with high ratings by discriminator

- Fine-tune on this high-quality pre-training data

- Further fine-tune on 4K “gold-standard” conversations with crowdworkers

The Case of Conversational Behavior
Targeted LLM Fine-tuning

83
[Thoppilan et al. 2022]

• Process also included fine-
tuning the model to retrieve
external data

• Consistent significant effects
across model sizes

The Case of Conversational Behavior
Targeted LLM Fine-tuning

84
[Thoppilan et al. 2022]Figure 4: Effects of model scaling and fine-tuning on six foundation metrics. We show results for 2B, 8B and 137B

parameters pre-trained (PT) and fine-tuned (LaMDA) models, and compare them with results for crowdworker with
access to information retrieval tools (‘Human’), and without access to information retrieval tools (‘Human w/o IR’).

Figure 5 breaks down the contributions of FT quality-safety fine-tuning and FT groundedness fine-tuning to our final
results using the largest model. There is a notable increase in performance across all metrics between PT and FT
quality-safety. Groundedness further improves from FT quality-safety to FT groundedness (LaMDA), which is meant
to ground the model-generated statements about the external world on an information retrieval system.

12

• RLHF is an essential, but complex and compute-intensive process to
make expressive LLMs useful

• It presents a very restricted instance of RL (basically a bandit problem),
even though it uses relatively advanced algorithms

• Data is the key to the process, and it requires careful curation and
annotation

• There are supervised approaches that can get similar or even equal
results (e.g., DPO)

• There is room for small-scale fine-tuning, especially in targeted scenarios

• Many open problems, a lot of active research in this area

Key Takeaways
Aligning LLMs

85

• Instruction tuning and conversational tuning slides inspired by
Alane Suhr’s slides for Berkeley CS 288

• The notation for the RL slides is based on Sutton and Barto
(second edition)

• RLHF slides are inspired by slides by Eric Mitchell

• DPO slides are based on slides by Eric Mitchell

Acknowledgements

86

